a2 United States Patent

US009348563B1

(10) Patent No.: US 9,348,563 B1

Xue et al. 45) Date of Patent: May 24, 2016
(54) BI-DIRECTIONAL EDITING BETWEEN 2013/0247005 Al* 9/2013 Hirschcccoovevnennns GO6F 8/71
VISUAL SCREEN DESIGNER AND SOURCE 717/121
CODE 2014/0343696 Al* 11/2014 Plache GO5B 19/0426
700/83
. 2015/0020006 Al* 1/2015 Kotzer GOGF 17/30867
(71) Applicants: Yunjiao Xue, Waterloo (CA); David 715/762
Brandow, Guelph (CA) 2015/0317288 Al* 112015 Ragan GOGF 17/3089
715/234

(72) Inventors: Yunjiao Xue, Waterloo (CA); David OTHER PUBLICATIONS

Brandow, Guelph (CA)

(73) Assignee: SAP SE, Walldorf (DE)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/566,537

(22) Filed: Dec. 10, 2014

(51) Int.CL

GO6F 9/44 (2006.01)
(52) US.CL

CPC e GO6F 8/34 (2013.01)
(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,370,315 B1* 5/2008 Lovellcccoevns GO6F 8/33
715/763

2006/0200799 Al* 9/2006 Willsccccevinin. GO6F 8/34
717/109

2007/0028164 Al* 2/2007 Kawanishi GO6F 17/2247
715/207

“Sybase Unwired Platform”, internet article, Sep. 2010.*
* cited by examiner

Primary Examiner — Daxin Wu
(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

In an example embodiment, a change pertaining to a first
element in a visual representation of a screen of a hybrid
application in a screen design tool of an application develop-
ment tool in an enterprise mobility platform is detected. A
library of elements is accessed to retrieve a first code-gener-
ating algorithm corresponding to the first element, the first
code-algorithm designed to create a first block of source code
written in a scripting language that can be rendered as a user
interface representation. A code preview tool of the applica-
tion development tool is caused to display source code written
in the scripting language, the source code displayed by the
code preview tool reflecting the change pertaining to the first
element by the code preview tool adding, changing, or remov-
ing the first block of source code corresponding to the first
element to or from a previously displayed version of the
source code.

19 Claims, 15 Drawing Sheets

1300 N DETECT CHANGE IN
~ APPLICATI
ICATION DEVELOPMEN

TOOL

1304

SCREEN
DESIGN TOOL

IDENTIFY
CHANGED
ELEMENT

Jt

ACCESS LIBRARY
OF ELEMENTS TO
RETRIEVE A

cobE- | >
GENERATING
ALGORITHM
CORRESPONDING
TO CHANGED
ELEMENT

!

MAKE [~1310
CORRESPONDING|
CHANGE TO
SOURCE CODE

}

CAUSE CODE
pREviEW TOOL | 12
TO DISPLAY

1308

CHANGE TO
SOURCE CODE

CHANGE IN
SCREEN DESIGN TOOL

IDENTIFY
CHANGED
SOURCE CODE

!

ACCESS LIBRARY
OF ELEMENTS TO
RETRIEVE
1316~__| ALGORITHMS TO
UPDATE THE
MOBILE
WORKFLOW
PACKAGE FOR
THE ELEMENT
CORRESPONDING
TO CHANGED
SOURCE CODE
2

1318 MAKE
CORRESPONDING
CHANGE TO
MOBILE

TOOL?

WORKFLOW
PACKAGE FOR
THE SOURCE
CODE

1320 L]

CAUSE SCREEN
DESIGN TOOL TO
DISPLAY CHANGE

TO SCREEN

US 9,348,563 B1

Sheet 1 of 15

May 24, 2016

U.S. Patent

7001 INTNOT1IAIA
NOILYOINddV [0
NOILYDITddY
AI9AH AOTd3a
|——'——) [J~s00
3svaviIva | NOLLYOMddY | 4| NOILYOddY
aNI-Movd AIMEAH | NOILYOI1ddY aarAH T
L 701
| — — — — >y QI¥GAH
¥IAY3S QvOINMOd HANIVLNOD
chi . g3M QIYFAH
90}
301A3A INTI1D
01
J/oe

US 9,348,563 B1

Sheet 2 of 15

May 24, 2016

U.S. Patent

¢ DIA

JIMAIA
INJNHOVLLY B2
NVId4000V =
379ISdvVT100 =

M3IIATHd 300D

NOIS3A NIFHIS

N9IS3a MO14

NOILONAOYLNI

[»

ST0HINOD
Z JT90N AJINO =2

NOLLNEoIdvy <
X08X31d <

— STOYLNOD
Va SNdvS &2

J0I10HO B
X08alla3 =p
X08X¥03HO @

STOYLNOD
Z NOWWOD &2

NOILOY WOLSNO§
WILINNIWE,

4|

el

\
oz

SNOILOV NOL1SND

~

80¢

\
-2z

|/

NNIN

002 14V1S

13av1
<X08xX314>
<X08xX314>

4 EINERVAY -

N\ SrMAINLNYLS)

¥0¢

00¢

d13H MOANIM NNY LOArOdd HOWUYIS FLVOIAYN WVHOVIa Lid3 3714 ./

NAS 3SdI103 - SMIAINLHYLS/LSAL - INFWdOTIAIA ITISON ©

20l

US 9,348,563 B1

Sheet 3 of 15

May 24, 2016

U.S. Patent

& OIA

A - M3IIATED 300D | NOISTA NITHOS NOIS3Ia MO NOILONAOXLNI
mmzms / 4 | >
S
INFWHOYLLY ¥ N 0l2 a0z o
NYIQH002V & [
319I1Sdv1100 = {
600, HLAIM
STOYLINOD HNI'NOILOZYIALXAL IO IN'dYS :NOILOIMIALXAL
Z 190N AYANOr =2 ‘NIOIG'NOMY.LXIL IH0'IN'dVYS NOITYLXIL
. ‘INYL TIEISIA
. L4138y, Al
NOLLNEOIavY <+ ‘QYYANYLS NOISIATIYTIN'dYS :NOISAA
Xogx3ad <+ 17139V T W dvS MIN
_ STOUINOD _ 1:SW3LI
y SNdVS < HOLTHLS SWALINDITYXT T4 W dYS :SWALINOITY
_ ‘[4V1S INTLNODAILSNFXT 1A W VS :LNILNODALILSNN
. ‘NQIdALYTANTEXTTH W dYS TdALYIANTY
20I0HD ‘397v4 *4ANIVINOIDLIA
B , . o .
MOY'NOILOIHIAXT T4 W dYS :NOILOTNIA T
X0411a3 ch : : g
_ 3S7v4 :ANINIAYTASIA
XODIOTFHO B %001, SHLAIM /
STOYLNOD %001, :LHOAH 708
7 NOWIWO? =2 INYL TGISIA
NOILOV NOLSMO § HXOGH W dvS MaN = OW3LI X08X3 14 ¥VA
- WILINNTWE, | } (43TI0LNOOOINOILONN * INFLNOOALYRO [T
v ©®hl v —1 | o0¢
4 LTV @ N\ SIMIIN YIS @y
dTaH MOGNIM NNY 1D3r0dd HOWV3S ALVOIAYN WvdovIia Lid3 314 ~
< o= QS 35dM103 - SCMIIANL1¥VLS/ISIL - INIWOTIAIA INFON & | 4p,

US 9,348,563 B1

Sheet 4 of 15

May 24, 2016

U.S. Patent

v OIA

HIMAIA
INJWHOVLLY ¥
NVIQ400dY 12
F19ISdV1100 =

M3IIATHd 300D

NOIS3A NIFHOS

NOIS3d MO

NOILONAOXLNI

IC

STOYLNOD
Z 390N A43NOI &

NOLLNEOIavy <
X0a8x3d <+

— STOYLNOD

V4 SNdvS =

30I0HO B
X04lld3 =p
X0aM03HO @A

ST0YLNOD
7 NOWWOD 42

\
N1z

NOILOY WOLSNO B
WALINNIWE,

v X

SNOILOY NOLSNID 807

\
-z

~

NNIN

90¢

u
MO | 13av1
u
<X0dX314> T

<X0gx314>

RS AR

4 ALV @

C\X SMMIINLEYLS @)

v0¢

— 00Y

00¢

d13H MOANIM NNY L1O3r0dd HOWY3S JLVOIAVN WYHOVId LId3 374

AdS 3SdITO3 - SCMAIA LYVLS/1SAL - INJNJOTIATIA ITII0N ©

20}

US 9,348,563 B1

Sheet 5 of 15

May 24, 2016

U.S. Patent

AN ¢ DIA e

dIMIIA
INJFWHOVLLY @
NVIQHOJV IE
319ISdY1100 =

MIINTEd 3000 | Noiszanazwos | Nois3amo4

NOILONAOYLNI

I

ST04INOD
Z TNGON A¥INOr =2

NOLLNE0oIavy <

{} (LN3AZ104LNODOINOILONNS VL
«» ‘NODIFAILOY

‘ANYL :LSHIINODI

‘. ANON, :NOD

‘INYL 319ISIA

(

INYL ‘a319VN3 l/
«» ‘HLAIM

‘1NY430IJALNOLLNG W dVS -TdAL
‘M0, -1X3L
DNOLLNE'N'dYS M3aN

%001, -HLAIM

X08x34 + HNI'NOJLOTHIQLX3LFHOY 1M dVS :NOILOIFHITLXIL
_ STOY.LNOD NIS3E'NOITY.XILFHOD 1N dYS INO[VLX3L
ANYL 3 TEISIA
7 SNdvs &2 h 138V, JIXEL
: OHVONYLS NOISITI3BVT I dvS NOIS3]
: N13aVTIN VS >_mz
‘S|
BI0HO B "HOL3YLS SWILINOITYXT T4 W dVS :SWILINOITY
SOmD B e G E I S
XODIOIHO & "351v4 HANIVINOD LIS
ST0YLNOD ‘MOY NOLLOR DX 14 /_“,_mn_%_.__,__,_ﬁ_w_&o.mm_m]
IOy
NOILOY WOLSND 8 200, Lo
|| WILINNINE, DXO8H W dYS MaN = ONILI X08X31d dVA
v X)) } (437I0YLNODOINOILONNA * INTLNODILYHO
<4 ETNERZT) O\ SMMAINLNYILS &)

™ 205

™ 006

00€

d13H MOANIM NNY 103arodd HOHVAS FLYOIAYN WvHOVIQ 1id3 314

MAS 3SdIN33 - SCMIIN'LEVLS/LSIL - INJNdOTIAIA 110N ©

A

US 9,348,563 B1

Sheet 6 of 15

May 24, 2016

U.S. Patent

oFN/ Q b\h \.Nom

- >>m__>m_m__n_ 3009 NOIS3d zmm_mow NOIS3a MOT4 NOILONAOHLNI
. | |»
i
dIMAIA ‘ [
ININHOVLLY ‘g HNI'NOILOZMIALXIL IO IN'dYS ! zoﬂ\mwou@_ﬁm_u@
NVIQHOOJV & ‘NISFENOITYLXAL II0D'IN'dYS INOITYLXAL
T19ISdVT100 & e
dmézﬁm.zo_mmodm_i.;%m ‘N9IS3] ™~ 009
STOHINOD INMIIVTIW VS g,ﬁq
Z J190N AYINOr =7 {1 (INJAT10HLNODOINOILONNA *d¥ L
« » ‘NODIFAILOY
= ‘INYL ISHIANODI
. S0 MIoiA
NOLLNGOIavy <4 ‘anyl; Eyﬂ%
X0gx3a1d < ‘1INY43Q'IdALNOLLNG W, nwwm 2l
_ S7104LNOD INOLINGW WS e
V4 SNdvS &2 95001, ‘HLAIM
HNI'NOILOZHIALX31 MO0 IN'dYS :NOLIDIMIAIXTL
"NIOFFNOITVIXTL FH0D'IN'dYS NDITYIXIL
: AR
30I10HO B .omézﬁm.zo_muemmi_,,@%m NSISIq
X09L1a3 b 138V TV VS z_m__m ALl
X08403HO @ ‘Lavis Fﬁmw%w_ﬁ_%_%%%w%ﬁ_‘m%
AN IdALIIANTIXTTT W' dvS ‘TdALNIANTY
STOHLINOD 3STv4 “HANIYINODLIS
7 NOWNOO oo LI A ——— |
NOILOY NOLSNO g mmmmrmw_m_m__\,\xm N 006
| | WILINNIFWE, HXO8H W d¥S MIN = ONFLI XOBXI T4 HvA ;//
v %Y } (43T10YINOJOINOILONNA * INFINODILYIHD obe
4 AIVIS® S\ X SMMANLEYLS By
d13H MOANIM NNY 123rodd HOWV3S JLYOIAVN AVHOVIA Lid3 I j
x [o[= MAS 3SdI103 - SMIAIN LIVLS/LSIL - INFNdOTIAIA INGON & | 7,

US 9,348,563 B1

Sheet 7 of 15

May 24, 2016

U.S. Patent

L DIA

NETEN
INFWHOVLLY B2

NVIJH000V B3
378I1SdV1100 =

M3IA3dd 3000 NOIS3d NIFH3S NOIS3d MO14 NOILONAOHLNI

\ _ [»

ST0HLINOD
Z 37901 A43NOr 7

NOLLNEOIavY <
Xoax3and <

— STOYLNOD
7 SNdvYS =2

A0I0HO B
X04Lid3 =p
XOSMO3HO @

STO0HLNOD
V4 NOWWOD &7

NOILOV WO1SNd §
WALINNTWE

v X

4

\
N N

[] [] —
00 ~J 13aviman| Mo 13avi

<X08X314> limn
<X08x314>

j x

SNOILOV WOLSND ./ ANINT g0z 1dv1S

4 EINERAY-:)

802
TN\X STMIANLAVLS Q]

¥02
L~ 20/

— 00Y

00¢

d13H MOANIM NNY 103r0dd HOHVY3IS ILVOIAYN WVHOVIA L1Id3 374

MAS 3SdIT03 - SCMIAINLEVIS/ISIL - INJNdOT1INIA 3TI90N ©

201

US 9,348,563 B1

Sheet 8 of 15

May 24, 2016

U.S. Patent

§ OI4

d3IMIAIA
INIWNHOVLLY @
NVIQJOIIV =
378ISdV1100 =

M3IIATHd 30D

NOIS3A NIFHOS NO

1S30 MO

NOILONAOYLNI

I»

ST0HLINOD
7 31900 A43IN0Or =72

NOLLNEOIaYY +
X0gX314 +

— STO4LNOD
V4 SNdvS &=

3010H) =
x04L1a3 ok
XOIOIH) @

STOYLNOD
7 NOWWOO &2

NOILOV WOISNO g
WALINNIWE,

4

el

4

\
N0z

\
o2z

00 ~

[13av1 man|
<X08X3 1>

xo I—II

<XX0gx3a+>

SNOILIOY NOLSND

~

80¢

~

ER Y

LYv1S

/

4 EINERVAY)

O\ SIMAINLAVLS K

v0¢C

- 00¥

00¢

d13H MOANIM NNY L1O3r0dd HOWY3S FLVOIAVN WYHOVId 11d3 374

MAs 3SdI03 - SCMIAINTHVLIS/ISTL - INJWdOT3IAIA 1190 ©

20l

US 9,348,563 B1

Sheet 9 of 15

May 24, 2016

U.S. Patent

01z~ 6 DJH e

JIMAIA
ININHOVLLY Y
NVIJ4020V &=
378I1Sdv1100 =

MIIAFH 3000 NOISIA NITHOS NOIS3a MOT4 NOILONAOHLNI

| I»

ST0HINOD
Z F1d0N AY3NOI =7

(

%004, HLAIM

HNI'NOILDAYIALX AL THOD IN'dVS ‘NOILOIHIALXIL

‘NI9IENOTYLXTLIHOY N dYS ‘NOITYLXIL

INYL F1DISIA

138V, X3l

'QUVANYLS NOISIATIGYTIN VS ‘NDISIA
DaavTivdvs gmﬂ

{} (INIATTIOHLNODOINOILONNS :dVL

: «» NOOIZALLOY
NOLLNEOoIavd < E[NTHTSYTEINOR
ANON, ‘NOOI
08X + INYL F18ISIA
— STOYINOD ,m:mta_yw_mﬁ
7 SNdvs =2 '11N¥430 JAAINOLLNG W VS TdAL
- MO, '1X3L
. HNOLLNG'W dvs \s_mz
A0I0HO B » ‘SWAL|
HOL3YLS SWALINOITYXT T4 W dv'S ‘SWILINOITY
X0dLla3 cp ‘L4VLS INFINODAAILSNIXT 1 W dYS -INFINODAJLLS
A0 IJALYIANIEXT T W VS ‘FdALYIANTY
XODIOIO & 35v4 *43NIYLNOD LI
ST1041INOD ‘MOYNOILOFHIAXTNH W VS NOILOFMIA]
s oo = e
NOILOY WO1SNO 8 00k, ‘1HOI3H
INYL 31ISIA
|| W3LINNIWE, DXOSH W dvs MaN = OWALI XOSX3TH dvA B
v XL } (43 T104LNOOOINOILONNS : INFINODILYIHD
4 EMERZT TN\ X SIMIINLYLS)

™ 006

00¢

d13H MOANIM NNY 133rodd HOWV3S ILVOIAVN WYHOvId 1id3 F1i4

AAS 3SdIM103 - SCMIIA'LIVLS/LISTL - INJNdOT3IAIA 19O ©

¢0l

US 9,348,563 B1

Sheet 10 of 15

May 24, 2016

U.S. Patent

- - MINTEAIA0D | NOISTANIIMOS | NOISIA MO NOILONCOMLNI
mm\sws / / _ >
A
INTWHOVLLY ¥y - 01e -2z "
NVIQHOOOV = : _
319ISdV1100 & Q
ST04LNOD %001, ‘HLAIM
2 TT90N AYANOT =2 HNI'NOILOTMIALXTLIHODIN'dYS NOILOTHIALXAL
- ‘NI93E'NOITY.LXIL'THOD IN'dVS NOITY.LXAL
. “INYL TEISIA
NOLLNEOoIavY 4 _ . «H138V1, -1X3L
YODTH <+ Q¥YANYLS'NDISIATIGYTIN VS NDISAa
H13avTIN°dvS MIN
— STOYINOD l:swaL
7 SNdVS = 'HOLIYLS SWALINOITYXTTH W' dVS :SWILINDITY
- 'L4V1S" INTLNODAILSNFXT T4 W dYS :LNILNODALILSAP
: ‘NG IJALYIANTEXT TS W dVS :FALYIANTY
I0I0HD B ‘35Tv4 "YANIVLNOOLH
X04L/a3 ch 'MOYNOILOTMIAXITHWYS NOLLOTMIA |
X0BY03HO @ — ‘35Tv4 -ANITNIAY1ASIA
%001, ‘HLAIM /
ST04INOD %00}, ' LHOIFH 0001
Y NOWOO =2 ‘INYL 31EISIA
NOILOV OLSN0 8 DXOGHW'dvS MIAN = OW3LI X0EXT 14 HVA
| NALININE] | } (43TI0MLNOJOINOILONNS * INFINOOALYRNO [T
hd Yolllv 00¢
< EMMENAT C\X SrMAINLEYLS &
d13H MOONIM NNY LO3r0dd HOYVAS JLVOIAYVN Wvd¥Ovid Lid3 314 ~
% o= QS 3SdI103 - STMIIN LYVLS/LSAL - ININdOTIAIA FTNFON S | 4p,

US 9,348,563 B1

Sheet 11 of 15

May 24, 2016

U.S. Patent

[l OIA

YIMIIA

INJFWHOVLLY ¥
NVIQ4000V =
319ISdvT100 =

M3IAFHd 3d0D

NOIS3d N330S NOIS3d MO NOILONAOYLNI

\

I»

STOULNOD

Z 190N A43INOI =2

NOLLNEOIAVY <

X0gxX3d 4

ST0¥LNOD
SNdYS =

I0I0HO B
X04a1ld3 b
X0aM03HO @

7

ST04LNOD
NOWNOD &2

NOILOY WOLSNO 8

WALINNIN B,

4|

el

//orm

SNOILIV WOLSND 807

\
N~z

~

NN3IN

902 14V1S

138v1 MaN
<X0gx314>
<X0gx314>

EINERAT

S\ SMMEAINLYYLS)

d13H MOANIM NNY LO3r0dd HOWVY3S ILVOIAVN WYHOVId L1id3 3114

MAS 3SdIT33 - SCMIAINLYVYLS/LISTL - INJNJOTIAIA FTIH0N ©

¥0¢

00¢

US 9,348,563 B1

Sheet 12 of 15

May 24, 2016

U.S. Patent

cl 'DIA

SINIWAT3

JT1NAON NOISHIANQD

40 Advdan

0cl

TYNOILO3YId-19

[N0z

1001 M3IATdd 3d0D

|

1001 INJNdOTIAIA NOILVIINddY

TO0L NOIS3A N3TFH0S

~20C)

//oomv

U.S. Patent May 24, 2016 Sheet 13 of 15 US 9,348,563 B1
1302
1300 | DETECT CHANGE IN
™ APPLICATION DEVELOPMENT
TOOL
1304 1314
IS
IDENTIFY SCREEN CHANGE IN CODETSEEV'EW IDENTIFY
CHANGED SCREEN DESIGN TOOL CHANGED
ELEMENT OR CODE PREVIEV, SOURCE CODE
l ™ a06 TOOL? l
OF ELEMENTS TO OF ELEMENTS TO
RETRIEVE A
sl NG RETRIEVE
1316~ _| ALGORITHMS TO
GENERATING [UPDATE THE
ALGORITHM MOBILE
CORRESPONDING
WORKFLOW
ELEMENT THE ELEMENT
l CORRESPONDING
TO CHANGED
VAKE ~is00 SOURCE CODE
CORRESPONDING L2
CHANGE TO 1318~_ MAKE
SOURCE CODE "CORRESPONDING
CHANGE TO
MOBILE
l WORKFLOW
PACKAGE FOR
CAUSE CODE [~~_ THE SOURCE
PREVIEW TOOL 1312 CODE
TO DISPLAY 1320 v
CHANGE TO S
SOURCE CODE CAUSE SCREEN
DESIGN TOOL TO
DISPLAY CHANGE
TO SCREEN

FiG. 13

U.S. Patent May 24, 2016 Sheet 14 of 15 US 9,348,563 B1
1400]
N\ |/ 1416

(MOBILE DEVICE A)

1410

- DISPLAY
/1418
GPSRECEIVER |«
1414
TRANSCEIVER |«g—
} 1404
+ 1402 /
MEMORY
il 1406
_»] PROCESSOR
0S
140
I 1412 /|
APPLICATIONS
/0 DEVICES

.)

U.S. Patent May 24, 2016 Sheet 15 of 15 US 9,348,563 B1

‘51 500

PROCESSOR S 1510
VIDEO

DISPLAY

150

1524 —~ INSTRUCTIONS

1504
MAINMEMORY ALPHANUMERIC 1512
INPUT DEVICE 5
1524 —— INSTRUCTIONS
| 1508—K
1506

1514
STATIC CURSOR CONTROL 5
MEMORY [€>[BUSpe—> DEVICE

/\)

152

DRIVEUNIT 3—1516
MACHINE-

NETWORK INTERFACH READABLE MEDIUM
DEVICE

/j
|
|

INSTRUCTIONS [~ 1524

1526 \

1518
SIGNAL _5_

¢—»| GENERATION
DEVICE

FIG. 15

US 9,348,563 B1

1
BI-DIRECTIONAL EDITING BETWEEN
VISUAL SCREEN DESIGNER AND SOURCE
CODE

TECHNICAL FIELD

This document generally relates to methods and systems
for use with computer networks. More particularly, this docu-
ment relates to an extensibility framework for use with
dynamic computer programming languages.

BACKGROUND

Enterprise mobility platforms manage the whole life cycle
of applications for an enterprise, including application devel-
opment, application deployment, application execution,
application management and mobile device management. In
a large corporation with tens of thousands of employees,
multiple business lines, and millions of transactions daily,
employees need to access data and work on their tasks while
they are in different statuses. Enterprise mobility platforms
enable business analysts and developers to quickly develop
mobile applications with specific business objectives and
functionality and deploy the applications, allowing other
employees to use the applications on their devices to process
data and information.

BRIEF DESCRIPTION OF DRAWINGS

The present disclosure is illustrated by way of example and
not limitation in the figures of the accompanying drawings, in
which like references indicate similar elements and in which:

FIG.11s ablock diagram illustrating an enterprise mobility
platform system in accordance with an example embodiment.

FIG. 2 is a screen capture illustrating a screen design page
of an application development tool in accordance with an
example embodiment.

FIG. 3 is ascreen capture illustrating the code preview page
of an application development tool in accordance with an
example embodiment.

FIG. 4 is a screen capture illustrating the screen design
page of an application development tool after the start screen
has been edited in accordance with an example embodiment.

FIG. 51s ascreen capture illustrating the code preview page
of'an application development tool after the start screen has
been edited in accordance with an example embodiment.

FIG. 6 is a screen capture illustrating the code preview page
of an application development tool after the code has been
manually edited in accordance with an example embodiment.

FIG. 7 is a screen capture illustrating the screen design
page of an application development tool in light of the manual
update of the source code in accordance with an example
embodiment.

FIG. 8 is a screen capture illustrating the screen design
page of an application development tool after the label has
been removed.

FIG.9is ascreen capture illustrating the code preview page
of an application development tool after the label has been
removed.

FIG. 10 is a screen capture illustrating the code preview
page of an application development tool after the OK button
has been removed.

FIG. 11 is a screen capture illustrating the screen design
page of an application development tool in light of the manual
update of the source code to remove the OK button in accor-
dance with an example embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 12 isablock diagram illustrating an application devel-
opment tool in accordance with an example embodiment.

FIG. 13 is a flow diagram illustrating a method of altering
a hybrid application in an application development tool in
accordance with an example embodiment.

FIG. 14 is a block diagram illustrating a mobile device,
according to an example embodiment.

FIG. 15 is ablock diagram of machine in the example form
of a computer system within which instructions for causing
the machine to perform any one or more of the methodologies
discussed herein may be executed.

DETAILED DESCRIPTION

The description that follows includes illustrative systems,
methods, techniques, instruction sequences, and computing
machine program products that embody illustrative embodi-
ments. In the following description, for purposes of explana-
tion, numerous specific details are set forth in order to provide
an understanding of various embodiments of the inventive
subject matter. It will be evident, however, to those skilled in
the art, that embodiments of the inventive subject matter may
be practiced without these specific details. In general, well-
known instruction instances, protocols, structures, and tech-
niques have not been shown in detail.

Inan example embodiment, aspects are provided that allow
for bi-directional editing between a visual screen designer in
an enterprise mobility platform and source code. This helps
reduce the difficulty a programmer typically has in manually
writing source code and viewing the effects of changes in the
source code.

FIG.1is ablock diagram illustrating an enterprise mobility
platform system 100 in accordance with an example embodi-
ment. The enterprise mobility platform system 100 may
include an application development tool 102, a hybrid appli-
cation 104, a server 106, and a hybrid web container 108. The
application development tool 102 (also sometimes known as
a designer) provides a visual graphical interface to allow a
programmer to develop the hybrid application 104. Once
complete, the hybrid application 104 is deployed to the server
106. Then a client device 110 downloads the hybrid applica-
tion 104 in the hybrid web container 108. Pictured here is a
single hybrid web container 108 on a client device 110,
although one of ordinary skill in the art will recognize that
multiple client devices could each have their own hybrid web
container 108 for a particular hybrid application 104. The
hybrid web container 108 is a native mobile application that
connects to the server 106 to download the appropriate hybrid
application 104 and then executes it. A back-end database 112
is also provided to allow the hybrid application 104 to access
shared data.

One example of an enterprise mobility platform system is
Sybase Unwired Platform (SUP). In SUP, the application
development tool 102 is an Eclipse-based integrated devel-
opment environment (IDE) that creates one or more mobile
workflow packages. A mobile workflow package is a model
for screens, widgets on screens and workflows between
screens. A XBW model is an implementation of a mobile
workflow package that defines user interface (screens) and
workflow (from screen to screen) of a hybrid application.
XBW is not an acronym but rather the name applied to this
type of model. The developer is able to visually design
screens and workflow using drag-and-drop operations.

The hybrid application 104 may store mobile business
objects (MBOs) and workflow packages. An MBO is a soft-
ware object like a class in programming languages. It encap-
sulates business logic of a mobile application. The MBO also

US 9,348,563 B1

3

includes attributes that map to data in a data set. When a
mobile application requests data, mobile applications use
MBOs to retrieve data from the data set. The MBO is devel-
oped in the application development tool 102 and deployed to
the server 106 along with the application. The MBO is bound
to a data source, such as a data source in the back-end data-
base 112.

Mobile workflow packages include web files that enable a
hybrid application to execute on mobile devices having dif-
ferent operating platforms. These web files enable a hybrid
application to execute on mobile devices having different
operating platforms. Additionally, the web files can be used to
create mobile applications that include extensive customiza-
tion at the screen layout and data interaction.

When the server 106 receives a workflow package, it may
deploy the hybrid application 104 as web files to the client
device 110. On the client device 110, the web files may be
installed in the hybrid web container 108.

When a client device 110 receives data from the server 106,
a user may manipulate the data. After a user manipulates the
data, the client device 110 may synchronize with the server
106 by returning the manipulated data to the server 106. On
the server 106, the manipulated data may be stored as a data
subset. The server 106 then uses the appropriate MBO to store
and retrieve data from the data source (e.g., back-end data-
base 112). When the server 106 retrieves data from the data
set, it may store the data as a data subset. Periodically, the
server 106 may synchronize with the data source by updating
the data set with the manipulated data stored in the data
subset.

A developer is able to design screens one by one in a screen
design page and generate JavaScript or other source code
from whatever has been designed. The JavaScript may
include methods that execute business logic of amobile appli-
cation. The methods included in the JavaScript may be trig-
gered when a user selects a link or button included in a screen
or performs some other interaction with a screen of a mobile
application. Additionally, the JavaScript allows a developerto
include functionality that activates other features or applica-
tions native to the client device 110. A person skilled in the art
will appreciate that a native application is an application that
is designed to run on an operating platform the client device
110. For example, a developer may add methods to a JavaS-
cript file to activate the camera or a calculator on a mobile
device.

FIG. 2 is a screen capture illustrating a screen design page
200 of an application development tool 102 in accordance
with an example embodiment. The screen design page 200 is
enabled by the user pressing on a screen design tab 202. Here
the screen design page 200 is displaying a start screen 204
along with a menu 206 for the start screen 204 and custom
actions 208 for the start screen 204. Typically, once the devel-
oper is finished visually designing the screens using the
screen design page 200, he or she would generate JavaScript
or other source code from whatever has been designed. While
the designer could manually edit the generated JavaScript or
other source code prior to deploying the hybrid application to
the server 106, the manual changes would not iterate through
to the mobile workflow package (e.g., XBW model) that
defines the visually created screens from the screen design
page 200. Hence, ordinarily the developer would be unable to
go back to alter the visual design of the screens once a manual
change is made to the source code.

In an example embodiment, source code is generated in a
framework that deals with user interface rendering. This
allows a rendered screen to be modified if the underlying
source code is also modified. In such an embodiment, a devel-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

oper enjoys the convenience of visually creating and editing
screens using a screen design page 200 of an application
development tool 102, but can also expect fine-grained con-
trol over the user interface by manually editing the source
code and seeing the results of such manual edits in the screen
design page 200. In one example embodiment, the source
code is generated in UI5, which is a JavaScript framework
that deals with Ul rendering and many other tasks. Thus, in an
example embodiment, the application development tool 102
is designed to allow bidirectional editing between a SUP
XBW model and UI5 JavaScript source code.

FIGS. 3-11 (in conjunction with previously discussed FI1G.
2) depict an example of bi-directional editing between a
visual screen designer and source code in accordance with an
example embodiment. Beginning with FIG. 3, the developer
may view the source code corresponding to the visually
designed start screen 204 by pressing a code preview tab 210
in the application development tool 102. FIG. 3 is a screen
capture illustrating the code preview page 300 of an applica-
tion development tool 102 in accordance with an example
embodiment. The code 302 depicted in the code preview page
300 represents JavaScript code generated from the mobile
workflow package (e.g., XBW model) from the start screen
204 that was previously designed by the developer.

Assume then that the developer navigates back to the
screen design page 200 by pressing the screen design tab 202
and then edits the start screen 204 using a drag and drop
operation. FIG. 4 is a screen capture illustrating the screen
design page 200 of an application development tool 102 after
the start screen 204 has been edited in accordance with an
example embodiment. Here, the developer has dragged and
dropped an OK button 400 into the start screen 204.

Assume then that the developer navigates back to the code
preview page 300 by pressing the code preview tab 210 in the
application development tool 102. FIG. 5 is a screen capture
illustrating the code preview page 300 of an application
development tool 102 after the start screen 204 has been
edited in accordance with an example embodiment. As can be
seen, the code 500 has been updated to include code 502 for
the newly added OK button 400.

Then assume that the developer wishes to manually alter
the code 500 from within the code preview page 300. FIG. 6
is a screen capture illustrating the code preview page 300 of
an application development tool 102 after the code 500 has
been manually edited in accordance with an example embodi-
ment. Here, the developer has added additional code 600,
which is intended to display a new label in the start screen
204. Then assume that the developer wishes to see the visual
results of this code change and presses the screen design tab
202. FIG. 7 is a screen capture illustrating the screen design
page 200 of an application development tool 102 in light of
the manual update of the source code in accordance with an
example embodiment. Here, the screen design page 200 has
been updated to reflect the new label 700.

Then assume that the developer wishes to remove label
702. The developer can then visually remove the label 702
(such as by a drag and drop operation) in the screen design
page 200. FIG. 8 is a screen capture illustrating the screen
design page 200 of an application development tool 102 after
the label 702 has been removed. As can be seen, the start
screen 204 has been updated so that OK button 400 and the
new label 700 have been moved.

Then assume the developer wishes to view the source code
after the label 702 has been removed. FIG. 9 is a screen
capture illustrating the code preview page 300 of an applica-
tion development tool 102 after the label 702 has been

US 9,348,563 B1

5

removed. As can be seen, code 900 has been automatically
altered to remove the code relating to the label 702.

Then assume the developer has changed his or her mind
and wishes to remove the OK button 400. The developer can
do this from the code preview page 300 by manually deleting
the code corresponding to the OK button 400. FIG. 10 is a
screen capture illustrating the code preview page 300 of an
application development tool 102 after the OK button 400 has
been removed. As can be seen, the code 1000 has been manu-
ally updated by the developer to remove code relating to the
OK button 400.

Then assume that the developer wishes to view the result of
the removal of the OK button 400. The developer can then
again press the screen design tab 202. FIG. 11 is a screen
capture illustrating the screen design page 200 of an applica-
tion development tool 102 in light of the manual update of the
source code to remove the OK button 400 in accordance with
an example embodiment. Here the start screen 204 has been
updated to reflect the changes made to the source code.

Of course, the above are only examples of the many difter-
ent types of editing that can be performed in each of the screen
design page 200 and the code preview page 300. Properties of
the widgets in either page can also be modified, and the
corresponding changes can be seen in the other page. Similar
bi-directional editing can be performed to add or remove
transitions between elements or screens.

FIG. 12 is a block diagram illustrating an application devel-
opment tool 1200 in accordance with an example embodi-
ment. In an example embodiment, the application develop-
ment tool 1200 is the application development tool 102 of
FIG. 1 in more detail. The application development tool 1200
may include a screen design tool 1202 and a code preview tool
1204. The screen design tool 1202 may present a visual inter-
face to a user to visually edit screens of a hybrid application,
such as the screen design page 200 depicted in FIGS. 2-11
above. The code preview tool 1204 may present raw source
code in a screen to a user to visually edit the raw source code
of the hybrid application, such as the code preview page 300
depicted in FIGS. 3-11 above. A bi-directional conversion
module 1206 may detect when changes are made in either the
screen design tool 1202 or the code preview tool 1204 and
may convert and iterate such changes through to the other of
the screen design tool 1202 or code preview tool 1204. This
may be accomplished by accessing a library of elements
1208. The library of elements 1208 may contain identifica-
tions of a number of supported elements that a developer can
add to a hybrid application as well as corresponding code-
generating algorithm for each of those supported elements.
The library of elements 1208 may also contain algorithms to
update the mobile workflow package for each of the sup-
ported elements. When a change occurs in the screen design
tool 1002, the bi-directional conversion module 1206 may act
to convert that change to the corresponding source code. This
may include identifying the screen element being altered
(e.g., updated, deleted or added) and obtaining the corre-
sponding code-generating algorithm for that element from
the library of elements 1208. The source code can then be
modified by applying that element’s code-generating algo-
rithm. Likewise, if a developer makes a change in the code
preview tool 1204, such as changing, adding or deleting a
particular block of code, the bi-directional conversion mod-
ule 1206 may act to convert that change to the corresponding
visual element. This may include identifying the element
corresponding to that block of source code in the library of
elements 1208 and then retrieving the algorithms to update
the mobile workflow package for that identified element. The
algorithms are applied to update the mobile workflow pack-

25

30

35

40

45

6

age. Then, the screen design tool 1202 displays an updated or
newly added element in the, or in the case of a deleted ele-
ment, stops displaying the identified element.

FIG. 13 is a flow diagram illustrating a method 1300 of
altering a hybrid application in an application development
tool in accordance with an example embodiment. In an
example embodiment, the method 1300 may be performed in
a bi-directional conversion module, such as the bi-directional
conversion module 1206 of FIG. 12. At operation 1302, a
change in the application development tool (e.g., application
development tool 102 of FIG. 1 or application development
tool 1200 of FIG. 12) may be detected. This change may be a
change created by a developer using the application develop-
ment tool. Examples of such changes include alterations of
screens in a screen design tool (e.g., screen design tool 1202)
by, for example, dragging and dropping new elements onto a
screen of the hybrid application, removing elements from the
screen of the hybrid application, editing elements’ properties,
and creating or removing transitions between screens in the
hybrid application. Additional examples of such changes
include adding, removing, or editing source code, in a code
preview tool (e.g., code preview tool 1204), written in a
scripting language that can be rendered as a user interface
representation.

Atoperation 1304 it is determined whether the change is in
a screen design tool or a page preview tool. If it is determined
that the change is in the screen design tool, then at operation
1306 the changed element is identified. At operation 1308, a
library of elements (e.g., library of elements 1208) is accessed
to retrieve a code-generating algorithm corresponding to the
changed element. Thus, if a particular element is added, a
code-generating algorithm for that element is obtained from
the library of elements. Likewise, if a particular element is
edited, a code-generating algorithm for that element is
obtained from the library of elements. Likewise, if a particu-
lar element is deleted, a code-generating algorithm for that
element is obtained from the library of elements. At operation
1310, a corresponding change is made to the source code for
the edited screen. This may include accessing the code-gen-
erating algorithm corresponding to the element being
changed in the screen design tool and adding, editing, or
deleting the source code for the element, as appropriate. In the
case of an addition of an element, the algorithm correspond-
ing to the element will generate and insert source code for the
element and into the screen’s source code at an appropriate
place. In the case of an editing of an element, the source code
corresponding to the prior version of the element may be
removed and the code-generating algorithm corresponding to
the element will generate and insert source code for the ele-
ment in its place (or, alternatively, only code relating to the
change within the element itself will be changed). In the case
of deletion of an element, the source code may be scanned to
identify a block of code matching the element, and then that
block of code may be removed from the source code. At
operation 1312 the code preview tool may be caused to dis-
play the changed source code.

If it is determined at operation 1302 that the change is in a
code preview tool, then at operation 1314 the changed source
code is identified. This may include identifying a block of
source code that has been added to the source code, identify-
ing a block of source code that has been modified, or identi-
fying a block of source code that has been deleted from the
source code. At operation 1316, a library of elements is
accessed to retrieve algorithms to update the mobile work-
flow package for to the element corresponding to the changed
block of source code. Thus, if a particular block of source
code is added, algorithms to update the mobile workflow

US 9,348,563 B1

7

package corresponding to the element that is the subject of the
block of source code are obtained from the library of ele-
ments. Likewise, if a particular block of source code is modi-
fied, algorithms to update the mobile workflow package for
the element corresponding to the element that is the subject of
the block of source code are obtained. Likewise, if a particular
block of source code is deleted, algorithms to update the
mobile workflow package corresponding to the element that
is the subject of the block of source code are obtained from the
library of elements.

At operation 1318, a corresponding change is made to the
mobile workflow package for the source code. This may
include locating the element (in the case of editing and delet-
ing) corresponding to the source code being edited in the code
preview tool and adding a new element, or editing or deleting
the element to update the mobile workflow package for the
element, as appropriate. In the case of an addition of an
element, the algorithms to update the mobile workflow pack-
age corresponding to the element is applied to insert the
element into the mobile workflow package at an appropriate
place. In the case of a deletion of an element, the mobile
workflow package may be scanned to identify algorithms to
update the mobile workflow package matching the element,
and then those algorithms are applied to remove the element
from the mobile workflow package. In the case of the editing
of an element, the algorithms corresponding to the element
are applied to update the mobile workflow package. At opera-
tion 1320 the screen design tool may be caused to display the
changed screen.

Example Mobile Device

FIG. 14 is a block diagram illustrating a mobile device
1400, according to an example embodiment. The mobile
device 1400 may include a processor 1402. The processor
1402 may be any of a variety of different types of commer-
cially available processors 1402 suitable for mobile devices
1400 (for example, an XScale architecture microprocessor, a
microprocessor without interlocked pipeline stages (MIPS)
architecture processor, or another type of processor 1402). A
memory 1404, such as a random access memory (RAM), a
flash memory, or other type of memory, is typically accessible
to the processor 1402. The memory 1404 may be adapted to
store an operating system (OS) 1406, as well as application
programs 1408, such as a mobile location enabled application
that may provide location-based services to a user. The pro-
cessor 1402 may be coupled, either directly or via appropriate
intermediary hardware, to a display 1410 and to one or more
input/output (I/O) devices 1412, such as a keypad, a touch
panel sensor, a microphone, and the like. Similarly, in some
embodiments, the processor 1402 may be coupled to a trans-
ceiver 1414 that interfaces with an antenna 1416. The trans-
ceiver 1414 may be configured to both transmit and receive
cellular network signals, wireless data signals, or other types
of signals via the antenna 1416, depending on the nature of
the mobile device 1400. Further, in some configurations, a
GPS receiver 1418 may also make use of the antenna 1416 to
receive GPS signals.

Modules, Components and Logic

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute either software modules (e.g., code
embodied (1) on a non-transitory machine-readable medium
or (2) in a transmission signal) or hardware-implemented
modules. A hardware-implemented module is a tangible unit
capable of performing certain operations and may be config-
ured or arranged in a certain manner. In example embodi-
ments, one or more computer systems (e.g., a standalone,
client or server computer system) of one or more processors

5

10

15

20

25

30

35

40

45

50

55

60

65

8

(e.g., processor 1402) may be configured by software (e.g., an
application or application portion) as a hardware-imple-
mented module that operates to perform certain operations as
described herein.

Invarious embodiments, a hardware-implemented module
may be implemented mechanically or electronically. For
example, a hardware-implemented module may comprise
dedicated circuitry or logic that is permanently configured
(e.g., as a special-purpose processor, such as a field program-
mable gate array (FPGA) or an application-specific inte-
grated circuit (ASIC)) to perform certain operations. A hard-
ware-implemented module may also comprise
programmable logic or circuitry (e.g., as encompassed within
a general-purpose processor or other programmable proces-
sor) that is temporarily configured by software to perform
certain operations. It will be appreciated that the decision to
implement a hardware-implemented module mechanically,
in dedicated and permanently configured circuitry, or in tem-
porarily configured circuitry (e.g., configured by software)
may be driven by cost and time considerations.

Accordingly, the term “hardware-implemented module”
should be understood to encompass a tangible entity, be that
an entity that is physically constructed, permanently config-
ured (e.g., hardwired) or temporarily or transitorily config-
ured (e.g., programmed) to operate in a certain manner and/or
to perform certain operations described herein. Considering
embodiments in which hardware-implemented modules are
temporarily configured (e.g., programmed), each of the hard-
ware-implemented modules need not be configured or instan-
tiated at any one instance in time. For example, where the
hardware-implemented modules comprise a general-purpose
processor configured using software, the general-purpose
processor may be configured as respective different hard-
ware-implemented modules at different times. Software may
accordingly configure a processor, for example, to constitute
a particular hardware-implemented module at one instance of
time and to constitute a different hardware-implemented
module at a different instance of time.

Hardware-implemented modules can provide information
to, and receive information from, other hardware-imple-
mented modules. Accordingly, the described hardware-
implemented modules may be regarded as being communi-
catively coupled. Where multiple of such hardware-
implemented ~ modules exist contemporaneously,
communications may be achieved through signal transmis-
sion (e.g., over appropriate circuits and buses that connect the
hardware-implemented modules). In embodiments in which
multiple hardware-implemented modules are configured or
instantiated at different times, communications between such
hardware-implemented modules may be achieved, for
example, through the storage and retrieval of information in
memory structures to which the multiple hardware-imple-
mented modules have access. For example, one hardware-
implemented module may perform an operation, and store the
output of that operation in a memory device to which it is
communicatively coupled. A further hardware-implemented
module may then, at a later time, access the memory device to
retrieve and process the stored output. Hardware-imple-
mented modules may also initiate communications with input
or output devices, and can operate on a resource (e.g., a
collection of information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by software)
or permanently configured to perform the relevant operations.
Whether temporarily or permanently configured, such pro-
cessors may constitute processor-implemented modules that

US 9,348,563 B1

9

operate to perform one or more operations or functions. The
modules referred to herein may, in some example embodi-
ments, comprise processor-implemented modules.

Similarly, the methods described herein may be at least
partially processor-implemented. For example, at least some
of the operations of a method may be performed by one or
more processors or processor-implemented modules. The
performance of certain of the operations may be distributed
among the one or more processors, not only residing within a
single machine, but deployed across a number of machines. In
some example embodiments, the processor or processors may
be located in a single location (e.g., within a home environ-
ment, an office environment or as a server farm), while in
other embodiments the processors may be distributed across
a number of locations.

The one or more processors may also operate to support
performance of the relevant operations in a “cloud comput-
ing” environment or as a “software as a service” (SaaS). For
example, at least some of the operations may be performed by
a group of computers (as examples of machines including
processors), these operations being accessible via a network
(e.g., the Internet) and via one or more appropriate interfaces
(e.g., APIs).

Electronic Apparatus and System

Example embodiments may be implemented in digital
electronic circuitry, or in computer hardware, firmware, soft-
ware, or in combinations of them. Example embodiments
may be implemented using a computer program product, e.g.,
a computer program tangibly embodied in an information
carrier, e.g., in a machine-readable medium for execution by,
or to control the operation of, data processing apparatus, e.g.,
a programmable processor, a computer, or multiple comput-
ers.

A computer program can be written in any form of pro-
gramming language, including compiled or interpreted lan-
guages, and it can be deployed in any form, including as a
stand-alone program or as a module, subroutine, or other unit
suitable for use in a computing environment. A computer
program can be deployed to be executed on one computer or
on multiple computers at one site or distributed across mul-
tiple sites and interconnected by a communication network.

In example embodiments, operations may be performed by
one or more programmable processors executing a computer
program to perform functions by operating on input data and
generating output. Method operations can also be performed
by, and apparatus of example embodiments may be imple-
mented as, special purpose logic circuitry, e.g., a FPGA or an
ASIC.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In embodiments
deploying a programmable computing system, it will be
appreciated that both hardware and software architectures
merit consideration. Specifically, it will be appreciated that
the choice of whether to implement certain functionality in
permanently configured hardware (e.g., an ASIC), in tempo-
rarily configured hardware (e.g., a combination of software
and a programmable processor), or a combination of perma-
nently and temporarily configured hardware may be a design
choice. Below are set out hardware (e.g., machine) and soft-
ware architectures that may be deployed, in various example
embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

10
Example Machine Architecture and Machine-Readable
Medium

FIG. 15 is ablock diagram of machine in the example form
of a computer system 1500 within which instructions 1524
may be executed for causing the machine to perform any one
or more of the methodologies discussed herein. In alternative
embodiments, the machine operates as a standalone device or
may be connected (e.g., networked) to other machines. In a
networked deployment, the machine may operate in the
capacity of a server or a client machine in server-client net-
work environment, or as a peer machine in a peer-to-peer (or
distributed) network environment. The machine may be a
personal computer (PC), a tablet PC, a set-top box (STB), a
personal digital assistant (PDA), a cellular telephone, a web
appliance, a network router, switch or bridge, or any machine
capable of executing instructions (sequential or otherwise)
that specify actions to be taken by that machine. Further,
while only a single machine is illustrated, the term “machine”
shall also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodologies
discussed herein.

The example computer system 1500 includes a processor
1502 (e.g., a central processing unit (CPU), a graphics pro-
cessing unit (GPU), or both), a main memory 1504, and a
static memory 1506, which communicate with each other via
abus 1508. The computer system 1500 may further include a
video display unit 1510 (e.g., a liquid crystal display (LCD)
or a cathode ray tube (CRT)). The computer system 1500 also
includes an alphanumeric input device 1512 (e.g., a keyboard
or a touch-sensitive display screen), a user interface (UI)
navigation (or cursor control) device 1514 (e.g., a mouse), a
disk drive unit 1516, a signal generation device 1518 (e.g., a
speaker), and a network interface device 1520.
Machine-Readable Medium

The disk drive unit 1516 includes a machine-readable
medium 1522 on which is stored one or more sets of data
structures and instructions 1524 (e.g., software) embodying
or utilized by any one or more of the methodologies or func-
tions described herein. The instructions 1524 may also reside,
completely or at least partially, within the main memory 1504
and/or within the processor 1502 during execution thereof by
the computer system 1500, with the main memory 1504 and
the processor 1502 also constituting machine-readable media
1522.

While the machine-readable medium 1522 is shown in an
example embodiment to be a single medium, the term
“machine-readable medium” may include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more instructions 1524 or data structures. The term
“machine-readable medium” shall also be taken to include
any tangible medium that is capable of storing, encoding or
carrying instructions 1524 for execution by the machine and
that cause the machine to perform any one or more of the
methodologies of the present disclosure or that is capable of
storing, encoding or carrying data structures utilized by or
associated with such instructions 1524. The term “machine-
readable medium” shall accordingly be taken to include, but
not be limited to, solid-state memories, and optical and mag-
netic media. Specific examples of machine-readable media
1522 include non-volatile memory, including by way of
example semiconductor memory devices, e.g., erasable pro-
grammable read-only memory (EPROM), electrically eras-
able programmable read-only memory (EEPROM), and flash

US 9,348,563 B1

11

memory devices; magnetic disks such as internal hard disks
and removable disks; magneto-optical disks; and CD-ROM
and DVD-ROM disks.
Transmission Medium
The instructions 1524 may further be transmitted or
received over a communications network 1526 using a trans-
mission medium. The instructions 1524 may be transmitted
using the network interface device 1520 and any one of a
number of well-known transfer protocols (e.g., HTTP).
Examples of communication networks include a local area
network (LAN), a wide area network (WAN), the Internet,
mobile telephone networks, plain old telephone (POTS) net-
works, and wireless data networks (e.g., WiFi and WiMax
networks). The term “transmission medium” shall be taken to
include any intangible medium that is capable of storing,
encoding or carrying instructions 1524 for execution by the
machine, and includes digital or analog communications sig-
nals or other intangible media to facilitate communication of
such software.
Although an embodiment has been described with refer-
ence to specific example embodiments, it will be evident that
various modifications and changes may be made to these
embodiments without departing from the broader spirit and
scope of the disclosure. Accordingly, the specification and
drawings are to be regarded in an illustrative rather than a
restrictive sense. The accompanying drawings that form a
part hereof, show by way ofillustration, and not of limitation,
specific embodiments in which the subject matter may be
practiced. The embodiments illustrated are described in suf-
ficient detail to enable those skilled in the art to practice the
teachings disclosed herein. Other embodiments may be uti-
lized and derived therefrom, such that structural and logical
substitutions and changes may be made without departing
from the scope of this disclosure. This Detailed Description,
therefore, is not to be taken in a limiting sense, and the scope
of various embodiments is defined only by the appended
claims, along with the full range of equivalents to which such
claims are entitled.
Such embodiments of the inventive subject matter may be
referred to herein, individually and/or collectively, by the
term “invention” merely for convenience and without intend-
ing to voluntarily limit the scope of this application to any
single invention or inventive concept if more than one is in
fact disclosed. Thus, although specific embodiments have
been illustrated and described herein, it should be appreciated
that any arrangement calculated to achieve the same purpose
may be substituted for the specific embodiments shown. This
disclosure is intended to cover any and all adaptations or
variations of various embodiments. Combinations of the
above embodiments, and other embodiments not specifically
described herein, will be apparent to those of skill in the art
upon reviewing the above description.
What is claimed is:
1. A method comprising:
detecting, in a screen design tool of an application devel-
opment tool in an enterprise mobility platform, alter-
ation, by a user of the screen design tool, of a first visual
element currently displayed in a visual representation of
a screen of a hybrid application in the screen design tool;

accessing, in response to the detecting, a library of ele-
ments to retrieve a first code-generating algorithm cor-
responding to the first visual element;

executing the first code-generating algorithm, the first

code-generating algorithm, when executed, creating a
first block of source code written in a scripting language
that can be rendered as a user interface representation,
the first block of source code designed to cause render-

25

35

40

45

50

55

60

65

12

ing of the first visual element in response to execution of
the first block of source code in an end-user browser
application; and

causing a code preview tool of the application development
tool to display source code written in the scripting lan-
guage, the source code displayed by the code preview
tool reflecting the alteration pertaining to the first visual
element by the code preview tool adding, changing, or
removing the first block of source code to or from a
previously displayed version of the source code.

2. The method of claim 1, further comprising:

detecting a change pertaining to a second element in the
source code displayed in the code preview tool, the
change corresponding to a deletion, editing, or addition
of a second block of source code;

accessing the library of elements to retrieve information
relating to the second element based on the second block
of source code; and

causing the screen design tool to display a visual represen-
tation of a screen of the hybrid application reflecting the
change pertaining to the second element based on the
retrieved information relating to the second element.

3. The method of claim 1, wherein the detecting includes
detecting a drag-and-drop operation performed in the screen
design tool to drag the first element on to or off of the screen
and selecting the first element to edit its properties.

4. The method of claim 1, wherein the first element is a
transition between screens of the hybrid application.

5. The method of claim 2, wherein the screen design tool
updates an XBW model for the hybrid application.

6. The method of claim 5, further comprising causing a
change in the XBW model, the change in the XBW model
corresponding to the change pertaining to the second element.

7. The method of claim 1, further comprising creating the
hybrid application based on the source code in the code pre-
view tool.

8. The method of claim 7, further comprising downloading
the hybrid application into a hybrid web container running on
a client mobile device for execution.

9. An application development tool, having a hardware
processor, the application development tool comprising:

a screen design tool executable by one or more processors

and configured to:
graphically display one or more screens of a hybrid
application;

permit a designer to modify the hybrid application by user
interaction with one or more elements in a graphical
display of the one or more screens;

a code preview tool executable by the one or more or
processors and configured to:
display source code for the hybrid application;

permit the designer to modify the source code;

a library of elements containing identifications of sup-
ported elements, corresponding code-generating algo-
rithm for each of the supported elements and algorithms
to update the mobile workflow package for each of the
supported elements;

a bi-directional conversion module executable by the one
or more processors and configured to:

detect, in the screen design tool, alteration, by a user of the
screen design tool, of a first visual element currently
displayed in the graphical display of the one or more
screens from the screen design tool;

access the library of elements to retrieve a first code-gen-
erating algorithm corresponding to the first visual ele-
ment, in response to the detecting;

US 9,348,563 B1

13

execute the first code-generating algorithm, the first code-
generating algorithm, when executed, creating a first
block source code, the first block of source code
designed to cause rending of the first visual element in
response to execution of the first block of source code in
an end-user browser application; and

cause the code preview tool to reflect the alteration pertain-

ing to the first element visual by the code preview tool
adding, changing or removing the first block of source
code corresponding to the first element to or from a
previously displayed version of the source code.

10. The application development tool of claim 9, wherein
the user interaction with the one or more elements in the
graphical display of the one or more screens includes drag-
ging and dropping the one or more elements and selecting the
one or more elements to edit their properties.

11. The application development tool of claim 9, if wherein
the source code is written in a scripting language that can be
rendered as a user interface representation.

12. The application development tool of claim 9, wherein
the bi-directional conversion module is further configured to:

detect a change pertaining to a second element in the source

code displayed in the code preview tool, the change
corresponding to an editing, deletion or addition of a
second block of source code;

access the library of elements to retrieve algorithms to

update the XBW model element relating to the second
element; and

cause the screen design tool to graphically display a screen

of the hybrid application reflecting the change pertain-
ing to the second element based on the algorithms to
update the XBW model for the second element.
13. A non-transitory machine-readable storage medium
comprising instructions, which when implemented by one or
more machines, cause the one or more machines to perform
operations comprising:
detecting, in a screen design tool of an application devel-
opment tool in an enterprise mobility platform, alter-
ation, by a user of the screen design tool, of a first visual
element currently displayed in a visual representation of
a screen of a hybrid application in the screen design tool;

accessing, in response to the detecting, a library of ele-
ments to retrieve a first code-generating algorithm cor-
responding to the first visual element;

executing the first code-generating algorithm, the first

code-generating algorithm, when executed, creating a
first block of source code written in a scripting language

10

20

30

35

40

45

14

that can be rendered as a user interface representation,
the first block of source code designed to cause render-
ing of the first visual element in response to execution of
the first block of source code in an end-user browser
application; and

causing a code preview tool of the application development
tool to display source code written in the scripting lan-
guage, the source code displayed by the code preview
tool reflecting the alteration pertaining to the first visual
element by the code preview tool adding, changing, or
removing the first block of source code to or from a
previously displayed version of the source code.

14. The non-transitory machine-readable storage medium
of claim 13, further comprising:

detecting a change pertaining to a second element in the
source code displayed in the code preview tool, the
change corresponding to a deletion, editing, or addition
of a second block of source code;

accessing the library of elements to retrieve information
relating to the second element based on the second block
of source code; and

causing the screen design tool to display a visual represen-
tation of a screen of the hybrid application reflecting the
change pertaining to the second element based on the
retrieved information relating to the second element.

15. The non-transitory machine-readable storage medium
of claim 13, wherein the first element is a visual element in the
screen of the hybrid application.

16. The non-transitory machine-readable storage medium
of claim 15, wherein the detecting includes detecting a drag-
and-drop operation performed in the screen design tool to
drag the first visual element on to or off of the screen and
selecting the first element to edit its properties.

17. The non-transitory machine-readable storage medium
of claim 13, wherein the first visual element is a transition
between screens of the hybrid application.

18. The non-transitory machine-readable storage medium
of'claim 14, wherein the screen design tool operates an XBW
model for the hybrid application.

19. The non-transitory machine-readable storage medium
of claim 18, further comprising causing a change in the XBW
model, the change in the XBW model corresponding to the
change pertaining to the second element.

#* #* #* #* #*

